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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

The objectives of this study are to assess the quality of reservoir lithologies in the 

Heidelberg field as a potential reservoir for carbon dioxide storage, while also 

determining the impact of carbon dioxide on the mineralogy, porosity, permeability, and 

existing fractures. The choice of the Heidelberg field, for this study, reposes solely on the 

fact that it represents one of the biggest and most productive reservoirs in south central 

Mississippi. Also, the availability of core samples and data due to intensive studies by oil 

companies play a major role in our choice.  

Fossil fuels (e.g coal, oil, and natural gas) supply approximately 85% of the 

world’s energy needs (Kaldi et al., 2009). The low cost and relative abundance of fossil 

fuels suggest that fossil fuels will continue to be a significant component of the energy 

economy for a long period of time, estimated to be around 25 to 50 years (Kaldi et al., 

2009). The main concern, however, is that the burning of fossil fuels constitute one of the 

major sources of carbon dioxide, which is considered as the main greenhouse gas 

released to the atmosphere (Intergovernmental Panel on Climate Change [IPCC], 2005).  

The capture of carbon dioxide and storage, in a geological formation, appears to 

be a means to reduce the emission of carbon dioxide in the atmosphere. Carbon 

sequestration and storage can contribute to the reduction of atmospheric and 
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anthropogenic carbon dioxide (Kaldi, 2009). A technical report from the IPCC has 

indicated the potential of at least around 2000 billion metric tons of carbon dioxide 

storage in geological formations (table 1) (IPCC, 2005).  

Table 1.1 Storage Capacity of different geological storage options in Giga-tons (IPCC, 
2005) 

Reservoir Type 
Lower estimate of Storage 

capacity (Gt carbon dioxide) 

Upper estimate of Storage 

capacity (Gt carbon dioxide) 

Oil and gas fields 675 900 

Unmineable coal seams in 

Enhanced Coalbed Methane 

recovery (ECBM) 

3-15 200 

Deep saline formations 1000 
Uncertain but possibly 

10,000 

 

As stated above, the objectives of this research are to assess the quality of 

reservoir lithologies in the Heidelberg field as a potential reservoir for carbon dioxide 

storage, while also determining the impact of carbon dioxide on the mineralogy, porosity, 

permeability, and existing fractures. A study of different lithologies using core samples 

from the Eutaw, Tuscaloosa, “Rodessa”, Salem (control), and Smackover formations was 

conducted to characterize permeability, porosity, mineralogy, and fractures. The 

hypotheses to be tested are: 1) carbon dioxide, used as either a tertiary recovery tool or in 

carbon sequestration, will enhance the porosity, permeability, or induce a change in 
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mineralogy, and fractures in some rocks and 2) the effects of carbon dioxide will be 

different in different lithologies. 

In this study, standard research petrography was used to describe core samples 

and thin sections. X-ray diffraction (XRD) was utilized to identify the mineralogy before 

and after samples were impregnated with carbonic acid (H2CO3). SEM-EDS was used to 

identify, confirm, and document the microstructure of cements, porosity, minerals, and 

fracture systems present. Focused Ion Beam (FIB-SEM) was used to determine the pore 

system and connectivity, understand the microstructure, and construct a 3D model of 

sample 8.   

As future carbon sequestration efforts, this project is significant in that the results 

can be applied to secondary and tertiary oil recovery efforts, as well as the impacts of 

carbon dioxide storage on reservoir rocks. Carbon dioxide storage requires specific 

geological characteristics. The study will also suggest desireable lithologic characteristics 

of possible sites and provide fundamental information in preparation for carbon dioxide 

sequestration that can be used in secondary and tertiary oil recovery efforts. Finally, 

understanding the potential hazards of permanent carbon dioxide sequestration is 

important to protect communities near sequestration sites. Carbon dioxide can be 

dangerous due to leakage or migration within the subsurface and/or the surface after 

storage. Leakage of carbon dioxide can occur through abandonned wells or geologic 

features such as faults and fractures (Kaldi et al., 2009). Those carbon dioxide leaks can 

possibily be harmfull to the environments, especially, human via water contamination. 

Furthermore, Carbon dioxide is classififed as the main green house gas released to the 

atmosphere (IPCC, 2005), preventing or reducing the emission of carbon dioxide is 
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imperative to protect our environment. Carbon dioxide capture and storage (CCS) in 

geologic reservoirs could also help mitigate its impact on the atmosphere.  

1.2 Literature review 

The Heidelberg field is located in the southeastern portion of Jasper County, 

Mississippi, near the small town of Heidelberg (fig 1). The Heidelberg is located in 

Twp.1 N., Rges. 12 E. and 13 E., and Twp. 10 N., Rges. 10 W. and 11 W (McCullough, 

1944).   



www.manaraa.com

 

5 

 

Figure 1.1 Map of Mississippi showing the area of interest, Heidelberg ( area within 
box). 

Morse (1944). 

1.3 Geologic setting 

The geologic history of the Heidelberg field has been linked to the Mississippi 

Interior Salt Basin, which one is linked to the origin of the Gulf of Mexico (Wood and 

Walper, 1974).  The Gulf of Mexico is described as a divergent margin basin 

distinguished by extensional tectonics and wrench faulting (Pilger, 1981; Miller, 1982; 

Klitgord et al., 1984; Van Siclen, 1984; Pindel, 1985; Salvador, 1987; Winker and 
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Buffler, 1988; Mancini et al., 1999). During the Late Triassic, a series of tectonic events 

lead to the break up of the supertcontinent Pangea. This series of  tectonic events 

continued through the the Late Jurassic with rifting and movement of the Yucatan block. 

The Yucatan was rimmed to the southern margin of the United States during the early 

Triassic (Salvador, 1991). Although early rifting may have been north-south, the general 

direction of rifting was detemined to be northwest-southeast (Pilger, 1981; McRae and 

Watkins, 1996);  defining  the gulf  as  an opening by right lateral translation (Van Siclen, 

1984; Buffler and Sawyer, 1985).  The overall structure and framework of the region was 

set up  during the Triassic and Jurassic, including the Mississippi Interior Salt Basin 

(Salvador, 1987). Thus, the Mississippi Interior Salt Basin was classified as the interior 

fracture portion of a margin sag basin (Kingston et al., 1983; Mancini et al., 2001). 

1.4 Structure and trap 

The Heidelberg field is part of the Mississippi Interior Salt Basin, which is 

considered one of the three major petroleum plays in the Northeastern Gulf of Mexico 

(Bennett et al., 2000). The United State Geological Society (USGS)  ranked the 

Mississippi Interior Salt Basin one of the more important regions in North America for 

oil and gas accumulations (Klett et al., 1997; Ahlbrandt, 1999; Bennett et al., 2000). 

Production in the local reservoirs of this basin is approximatley 1.5 billion barrels of oil 

and 6.7 TCF of gas (Bennett et al., 2000). The prolific nature of the Heidelberg field is 

partially associated with the local structure and stratigraphy. The formation of the 

Mississippi Interior Salt Basin is associated with extensional rift tectonics (Martin, 1978). 

An addition to extensional rifting, halokinesis, which is the mobilization and flow of 

subsurface salt and the subsequent emplacement and resulting structure of salt bodies, 
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also played a role in the formation of the basin and regional structures (Mancini et al., 

2001). The petroleum traps of the Mississippi Interior Salt Basin are directly associated 

with the progression and flow of the salt and related features including: 1) peripheral 

ridges 2) low-relief salt pillows 3) salt anticlines and turtles and 4) piercement domes 

(Hughes, 1968; Montgomery and Ericksen, 1997).  

In earlier studies, the Heidelberg field structure was described as an up-thrust over 

a deep intrusive salt dome (McCullough, 1944), which can be interpreted as a graben. 

The graben is comprised of series of blocks due to parallel faults running through it, 

consequently, creating a step down in increments of 100 ft, with a maximum drop at the 

center, located approximately 500 ft above the Eutaw Formation (McCullough, 1944). 

The two major faults forming the graben are located on either side of the dome (east-

west) running north-south, three-quarters of a mile apart. Between the two major faults, 

exist a series of diagonal cross faults, associated with intensive frictional forces in the 

area. The diagonal cross faults seem to be responsible for tilting, resulting in blocks being 

higher in the southern section than in the northern section (McCullough, 1944; Mancini, 

1994, 2001). The petroleum trap of the Heidelberg field was directly linked to the overall 

Mississippi Interior Salt Basin structure and related to progression of salt features in the 

area. The trap is described as a highly faulted, high-relief dome overlying a deep-seated 

salt dome (fig 1.2) (Mississippi Geological Society, 1957).  
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Figure 1.2 Heidelberg structure 

East-west cross section of Heidelberg field illustrating depth of the Eutaw Formation in 
central Mississippi and salt doming as the cause for the Heidelberg Sand-Hill graben 
system. Producing formations highlighted (Eutaw and Tuscaloosa) Modified from Oxley 
and Herlihy (1974). 

1.5 Stratigraphy 

The Heidelberg oil field contains 12 major formations, which are shown in table 

1.2. Hydrocarbon-producing units were recognized in the Heidelberg field through a 

series of drilling and geophysical analysis. The two main producing units are: 1) the 

Eutaw Formation and 2) the Tuscaloosa Formation.  

The Eutaw Formation is approximately 4,518-4,916 ft (1,377.1-1,498.4 m) thick 

in the subsurface (Morse, 1944), and consists of 400 ft (121.9 m) of alternating sand and 

shale. The sands are continuous, are easily correlated throughout the area, and grade 

downward from shaley, calcareous, fossiliferous sands into highly porous, fine-to-

medium grained, glauconitic sands (Mancini, 1994). The Eutaw Formation sediments 

were most likely deposited in a high energy transgressive pulse (Sohl, 1991). 
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Additionally, the Eutaw Formation was interpreted as having been deposited in a paralic, 

shallow marine environment (Mancini, 1994). 

The Tuscaloosa Formation can be divided in three different units (the Upper, 

Marine, and Lower Tuscaloosa) with a thickness around 4,916-5,550 ft (1498 to 1691 m) 

(Morse, 1944, Songgiao, 1993; Mancini et al., 1999); and with the most abundant 

production in the Upper Tuscaloosa. The Upper Tuscaloosa consists of sands which are 

very similar in characteristic to the lower sands of the Eutaw Formation: very porous and 

permeable, clean, and fine to medium grained (Mississippi Geological Society, 1957). 

The Upper Tuscaloosa sandstones were deposited during a transgressive-regressive cycle, 

when the Lower Tuscaloosa sandstones were associated with major fluvial-deltaic 

depositional system (Sohl et al., 1991).  

The Smackover Formation is one of the deepest formations within the Heidelberg 

field, approximately 12,000-13,000 ft (3657-39762 m) below the surface. The Smackover 

is composed of intertidal to subtidal laminated and microbial carbonate mudstone, 

subtidal peloidal wackestone and packestone, and subtidal to intertidal peloidal, ooid, 

oncoidal packestone and grainstone interbedded with laminated and fenestral carbonate 

mudstones (Mancini and Benson, 1980; Benson, 1988; Bearden et al., 2000). The 

Smackover was deposited on a carbonate ramp surface during the Jurassic transgression 

(Mancini and Benson, 1980; Benson, 1988).   
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Table 1.2 Stratigraphy for the eastern Gulf Coastal Plain. (Mancini et al., 2001). 
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1.6 Carbon dioxide 

Injection into oil-, gas-, and water-bearing lithologies is the most common option 

for carbon dioxide storage, and represents the only option that has been applied at the 

commercial scale (Rackley, 2010). The effectiveness and use of this option rely on the 

site characterization, the monitoring technologies, and the availability of carbon dioxide.  

Carbon dioxide storage requires specific geological characteristics. The presence of 

competent sealing boundaries, effective trapping in the target formation, the absence of 

vertical conduits through open faults and fractures, isolation from the surface connected 

aquifers, and a suitable hydrodynamic regime constitutes the different characteristics for 

a reservoir to be suitable for carbon dioxide (Rackley, 2010). Two possible geological 

settings are suggested for carbon dioxide storage: 1) storage in a saline aquifer and 2) 

storage in an oil or gas reservoir.  

Carbon dioxide injection has been used in oil reservoirs as an enhanced oil 

recovery technique (EOR), particularly in the Permian Basin, Unites States (Rackley, 

2010). Also, more recently, carbon dioxide has been used for EOR in the 1) Encana-

operated Weyburn and 2) the Apache Canada-operated Midale in Saskatchewan 

(Rackley, 2010). In these two cases, the use of carbon dioxide has improved the oil 

recovery from 5% to 10% of the original oil in place (OOIP), varying according to 

reservoir characteristics and the recovery efficiency of the preceding secondary recovery 

phase (Rackley, 2010).  

Carbon dioxide has proven to be a key element in oil recovery, however, through 

time it can affect the different characteristics of the reservoir including: porosity, 

permeability, mineralogy, and fractures. During high-pressure carbon dioxide injection in 
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a deep aquifer, it is possible that siderite and dolomite could be precipitated (Marini, 

2007), consequently, leading to a decrease in porosity. Also, a reaction path modeling of 

geological carbon dioxide sequestration in a glauconitic sandstone aquifer (using the 

PATHARC.94) of the Alberta Sedimentary Basin, Western Canada revealed a substantial 

trapping of carbon dioxide upon precipitation of siderite (Gunter et al., 1997, 2000).  

However, Xu et al. (2000, 2004) determined, in the same sedimentary basin, that the 

volume of siderite precipitated during such reaction could be far less than estimated by 

Gunter et al. (1997). The problem is that Gunter (1997) used annite as a proxy for 

glauconite. Therefore, using the TOUGHREACT, and considering glauconite instead of 

annite but also adding new minerals (e.g oligoclase and illite instead of albite, anorthite, 

and muscovite), would have led to a slight improvement of carbon dioxide sequestration 

capacity (Xu et al., 2000, 2004). Another experiment, this time in the sediments of the 

Gulf Coast by means of TOUGHREACT, would have produced solid phases product 

such as illite, dawsonite, ankerite, calcite, and siderite, with the last two (calcite and 

siderite) dissolving after a period of time (Xu et al., 2000, 2004). In the White Rim 

Sandstone, using the ChemTough code, White et al. (2005) found that 1,000 years after 

the end of the injection period approximately 21% of the injected carbon dioxide would 

have been trapped in carbonate minerals (calcite and dawsonite), at that time, 52% would 

have been present underground as a separate gas phase or would have dissolved in 

groundwater, and 17% would have leaked to the ground surface. In the carbonate rocks of 

the Alberta sedimentary basin, a rapid dissolution of calcite and siderite would have been 

observed while dolomite would have precipitated (Gunter et al., 2000). Most experiments 

involving the impact of carbon dioxide on rocks were conducted via simulation, using 
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different software such as TOUGHREACT, ChemTough code, and PATHARC, etc…. 

However, lately few actual laboratory experiments have been conducted. The results 

were generally not successful because of the slow kinetics of the processes (Marini, 

2007). The “few” noticeable success in laboratory experiments were conducted by 

Kaszuba et al. (2003, 2005), Pearce et al. (1996), Rochelle et al. (1996), and Sass et al. 

(1997) . After a period of respectively 80 days and 77 days and at a constant temperature 

of 200 degree Celsius, documentation of etching of potassic lamellae, growth of clay 

minerals on oligoclase, coatings of magnesite, corrosion of magnesite and euhedral 

siderite was recorded in the different samples (Kaszuba et al., 2003, 2005). Also, calcite 

and dolomite showed traces of alteration while dissolution of anhydrite followed by 

precipitation of calcite was observed by Pearce et al. (1996) and Rochelle et al. (1996). 

Furthermore, Pearce et al. (1996) and Rochelle et al. (1996) recorded corrosion of detrital 

feldspars accompanied by precipitation of Na-smectite. Further, Sass et al. (1997) did not 

record any major changes after reacting anorthite and glauconite with carbon dioxide and 

synthetic brine composed of Na-Ca-Cl. In the anorthite case, Ca was released in the 

system but precipitation of carbonate did not occurred, while in the glauconite case, an 

increase of Na was observed accompanied with a decrease in of K, Fe, and Si with no 

carbonate mineral precipitation (Sass et al., 1997).  

Understanding the interaction between the reservoir and carbon dioxide during 

sequestration and storage can provide valuable information for geologists to predict 

possible changes in reservoir characteristics (porosity, permeability, mineralogy, 

fractures) through time. Also, mineral trapping is considered as one of the most 

permanent methods to sequester carbon dioxide in the subsurface (Marini, 2010).  
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CHAPTER II 

METHOD  

2.1 Sample Selection 

The samples for this study were obtained from the Mississippi Department of 

Environmental quality in Jackson, Mississippi.  Approximately 3,970 to 9,610 ft (1210 to 

2929 m) of cut core samples were carefully analyzed. A total of 8 standard sized (27 mm 

x 46 mm) samples for rectangular thin section were chosen for this study. Also, a sample 

of calcitic Indiana Limestone/Bedford Limestone (known formally as the Salem 

Formation) was provided by Dr Brenda Kirkland to be used as a control during the 

experiment due to the homogeneous mineralogy and pore network of the sample. 

Samples were also selected according to pertinent data gathered from previous research 

on the Cook-McCornick core, Heidelberg field (Collins, 2008).   

2.2 Petrographic sectioning and standard petrographic analyses 

A total of 8 samples were sent to Spectrum Petrographics, Inc; 7 samples were 

made into standard (27 mm x 46 mm) and 1 sample into a grain mount rectangular thin 

sections. Each thin section was impregnated with the blue dyed-epoxy with no cover slips 

attached to facilitate the identification of porosity and porosity types, fractures, and 

enlarged fractures present. Petrographic analyses were carried out by observing each thin 

section under a standard Olympus BX50 petrographic microscope under transmitted 
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light. Photomicrographs of porosity, minerals, fractures, and cements present were taken 

using a Nikkon Coolpix 990 digital camera, before and after exposure to carbon dioxide.  

2.3 Scanning electron microscopy (SEM) analyses 

A portion of the samples was selected for SEM analyses.  SEM was used to 

determine the nature of the pore systems and minerals present in each samples.  Each 

selected, freshly broken sample for SEM analyses was Au/Pd coated using the polaron 

SEM coating system, for about 30 seconds in order to gain the required electrical 

conductivity.  

Elemental compositions within observed samples were also examined using the 

attached X-ray Electron dispersive (X-EDS) spectrometer of the JEOLJSM-6500F Field 

emission Scanning Electron Microscope (FESEM).  High resolution pictures of observed 

features were acquired with the FESEM’s digital image system.  All SEM analyses were 

carried out at the Mississippi State University Institute for Imaging and Analytical 

Techniques (I²AT).  

2.4 X-ray diffraction (XRD) 

A fraction of each sample was carefully obtained with a dental instrument and 

ground to fine powder with a mortar and pestle.  A portion of the finely ground powder 

was put on a glass slide that was inserted into the horizontal stages with a measuring 

range of 3° degrees to 70° degrees 2θ. Appropriate settings were utilized and each 

powder sample was analyzed in the Rigaku XRD system for at least 180 minutes. The 

exact mineralogy of the sampled powder was confirmed using the Jade® XRD analytical 

software. XRD was used to confirm the mineralogy present (quartz, feldspars, calcite, 
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dolomite, glauconite, etc….) in each of the eight samples before and after exposure to 

carbon dioxide. XRD analyses were performed at Mississippi State University (I²AT). 

2.5 Porosity analyses 

Porosity percent averages were determined on the thin sections of each of the 8 

samples (White et al., 1998), before and after exposure to carbon dioxide. Porosity was 

determined by the means of point count technique, using the standard Olympus BX50 

petrographic microscope under cross-polarized light. Point count was performed by 

determining the presence or absence of porosity at points on a grid spaced 1 mm apart. 

Once the top or bottom of the sample was reached, the sample was moved 1 mm to the 

left and the process was performed again. A total of approximately 100 to 300 point 

counts were conducted for the 8 samples.  Also, in the attempt to verify the data 

generated by the mean of point count, Jpor analysis was performed on the pre-carbon 

dioxide sample. Jpor is freeware that determines average porosity in thin section by 

calculating the amount of pixels that are blue as a result of epoxy filling pore spaces. Jpor 

was obtained online at www.geoanalysis.org/jPor.htlm. Each thin section was digitized 

using the HP Deskjet 2050 J510 series scanner. The images obtained were then altered to 

re-enforce the shades of blue representing porosity in the thin sections, then saved as a 

TIFF file, the only file type recognizable by the freeware. ImageJ was then used to find 

the number of pixels of each shade of blue known to represent porosity. The total sum of 

pixels determined as porosity in each thin section is divided by the total number of pixels 

in the whole image to give the average porosity.  
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2.6 Carbon dioxide test 

Carbon dioxide solution was prepared using reverse osmosis water (RO) with a 

pH of 7. Reverse osmosis water was used to ensure and minimize the presence of any 

chemicals (fluoride, chlorine, chloramines, nitrates, etc…) or metals in the water. Using a 

diffuser, carbon dioxide was added and dissolved in the water, making a carbonic acid 

solution (equation 2.1).  

 CO2(g) + H2O  CO2(aq) +  H2CO3  (2.1) 

The eight samples were impregnated with the carbonic acid solution and inserted 

in core tube apparatus (fig 2.1), designed by Dr. Lewis R. Brown of the Department of 

Biological Sciences at MSU to hold incubating samples under constant pressure. The 

core tubes were inserted in the QL Model 10 Lab Oven, at an initial Temperature of 

approximately 30° to 35° degrees Celsius then raised up to 80°-90° degrees Celsius for a 

total period of six months (182 days). The carbon dioxide test was conducted in Hilbun 

Hall biogeochemistry laboratory, Department of Geosciences, Mississippi State 

University.  
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Figure 2.1 Core incubation apparatus designed by Dr. Brown. Apparatus able to 
simulate high pressure, high temperature subsurface conditions for tests on 
small core samples.  
 

2.7 Focused Ion Beam Tomography (FIB-SEM) 

A Focused Ion Beam-SEM (FIB) was used to prepare cross-sections for Sample 8 

(dolomitic-Limestone/Smackover Fm). The multiple cross-sections, created by the FIB-

SEM, were used to investigate pore connectivity and the distribution of the possible 

precipitation of new mineral within the pore system after carbon dioxide treatment. Also, 

a 3D reconstruction of the microstructure using images generated by FIB-SEM before 

and after treatment was generated. The sample was attached to an aluminum stub with 

silver paste, and then was introduced in the Auriga 60 Zeiss system. The area of study 

was approximately 20 by 20 micron. A metal plate was mounted on the area interest with 

intent to avoid and at the same time delineate the area to be studied. The sample was then 

tilted at an angle of around 52° degree allowing direct observation of the prepared 

section. FIB was then used to remove a 10 nm thick cross-section face. Image of each 

cross-section faces removed was imaged. The process was repeated 500 to 600 times, 

creating a 3D data set of the dolomitic-limestone microstructure. All FIB analyses were 
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performed at the Joint School of Nanoscience and Nanoengineering (JSNN), in 

Greensboro, North Carolina.    
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CHAPTER III 

RESULTS (PRE AND POST CARBON DIOXIDE) 

3.1 Sample selection 

Approximately 5,640 ft (1719 m) of cut core samples from the Heidelberg field 

were observed and from that six samples were taken for analysis.  The types of lithology 

described include dolomitic-limestone, sandstone, and shaly-sandstone. Six samples from 

a total of eight for the study were chosen from the Heidelberg field and associated with a 

specific formation using depth or a specific lithology (table 3.1). Actual samples Location 

were proprietary, thus associating the exact depth to each formation was based on log 

data and structural map.  Porosity trend, grain types, and mineralogy for all the samples 

were generally assessed and included in the thin section petrographic analysis section. 

Diagenetic features present in the sandstone and shaly-sandstone were mostly fractures 

(fig 3.1) and oil remnants; while in the dolomitic-limestone and limestone, fractures were 

mostly observed. Table 3.1 shows a brief initial description of the eight samples.  
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Figure 3.1 Sun-7 (Sandstone/Heidelberg field)-8410-8787’ ft 

Picture shows possible enlarged fracture (pre-carbon dioxide). 
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Table 3.3 Cut core sample descriptions for the eight samples selected for the study 

 
Six samples were associated with the Heidelberg field.  The Smackover core sample was 
cut off of a teaching sample donated to Dr. Brenda Kirkland by Mobil Oil 
Corporation,from an unknown locality and the sample of the Salem Formation was 
donated to Dr. Kirkland by the Indiana State Geological Survey and was used as a control 
sample during the experiment. 

3.2 Thin Section Porosity Results 

Porosity average was determined pre- and post- carbon dioxide exposure in a total 

of eight samples by using the point counting method. The quantified porosity for each 

thin section was plotted and a porosity graph correlating each sample was generated. 

Also, the average porosity, pre-carbon dioxide, was quantified using thin section digitized 

images (fig 3.2). The thin sections post carbon dioxide were not dyed with blue epoxy, so 

making it impossible to use the Jpor freeware. The values for pixel counts associated with 

porosity (shades of blue) as well as the total amount of pixels for each thin section and 
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point count data in percent are showed in Table 3.2. Figure 3.3 and 3.4 represent porosity 

percent analyses and trend for all the samples from the Heidelberg field pre- and post 

carbon dioxide.  

 

Figure 3.2 Left represents scanned image of thin section – right represents image after 
contrast enhancement for porosity determination.  
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Table 3.4 Pixel counts for Thin Section Porosity analyses pre- and post- carbon 
dioxide. 

 
Pixel counts, total pixel, and percent porosity generated by Jpor analysis for pre-carbon 
dioxide samples were included in the table as a mean of comparison (statistical analysis 
by permutation shows a P-number of 0.8739).  
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Figure 3.3 Graph showing the percentage of porosity measured with two different 
methods. 

Blue line shows porosity data for each sample generated using Jpor method while the red 
plot shows porosity data using the point count method. Statistical validity of porosity data 
using Jpor and point count was verified using the permuation method (P-value: 0.8739).   
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Figure 3.4 Graph shows porosity trend for each sample after carbon dioxide treatment 
 

3.3 Petrographic analyses Results 

A total of 7 standard (27 mm X 46 mm) and 1 grain mount rectangular thin 

sections were prepared and analyzed in this study. A Total of 6 thin section slides were 

made from samples obtained from cores, core plugs, and cuttings taken from wells in the 

Heidelberg field.  In addition, two samples were obtained from Dr Brenda Kirkland, one 

of which was used as control because it is known to be composed of predominantly of 

calcite. Pictures of the eight thin section slides were taken with a petrographic 

microscope and types of porosity, microfractures, minerals, and lithostratigraphy were 

determined pre and post carbon dioxide treatment. Furthermore, petrographic analysis 

was conducted to record and document any possible changes such us: alteration, 

precipitation, and porosity.  
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3.3.1 Sample 1- St-1- Heidelberg field/4916-5581 ft 

St-1 is characterized by multiple cuttings. Thin section was made by grain mount.  

Fractures present must be artifacts. Pre-carbon dioxide analysis unveiled that quartz 

grains are dominant and embedded in calcite cement. Grain size varies from 1.00 to 0.25 

mm. Also, presence of glauconite and calcite minerals can be noted in calcite cement. 

Further, shells of gastropods were noted but seem to have been replaced by calcite. 

Porosity was determined to be of vuggy nature, interparticle, and intraparticle. Post-

carbon dioxide treatment analysis shows evidence of possible dissolution in calcitic 

gastropod shells.   Figure 3.5  shows quartz (white and gray) and glauconite (green) in 

calcite cement, Figure 3.6 shows vuggy porosity (dark, irregular shapes that cross cut 

allochems), calcitic shell fragments and clasts,  quartz grains, and an intraclast (brown, 

lower right) in a micrite matrix in pre carbon dioxide sample. Figure 3.7 and 3.8 are 

showing possible dissolution in both clay and calcite after carbon dioxide treatment.  

 

Figure 3.5 St-1 4916-5581 ft Photomicrograph shows quartz (white and gray) and 
glauconite (green) in calcite cement (pre-carbon dioxide treatment). 
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Figure 3.6 St-1 4916-5581 ft Vuggy porosity (dark, irregular shapes that cross cut 
allochems), calcitic shell fragments and clasts, quartz grains, and an 
intraclast (brown, lower right) in a micrite matrix (pre-carbon dioxide 
treatment). 

 

Figure 3.7 St-1 4916-5581 ft- Photomicrograph showing possible dissolution in clay 
(post-carbon dioxide).  
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Figure 3.8 St-1 4916-5581 ft- Photomicrograph showing possible evidence of 
dissolution in calcite. 

Mineral replacement of gastropod shell (post-carbon dioxide). 

3.3.2 Sample 2- Sc-2- Limestone-Salem Formation (control) 

Sc-2 represents a pure limestone from the Salem Formation (Indiana) and was 

used as a control during the experiment. Sc-2 is characterized by abundant presence of 

oolitically coated bryozoans’ fragments, foraminifera fragments filled with micrite. The 

cement was determined to be calcite. Two types of cement can be identified: syntaxial 

and meteoric calcite. The size of the different allochems present varies from 1.00 to 0.50 

mm. The types of porosity present include interparticle, intraparticle, and microporosity. 

Pre-carbon dioxide analysis shows in Figure 3.9 allochems including oolitically coated 

bryozoan fragments, coated and uncoated echinoderm fragments, and possible 

foraminifera fragments all interspersed with interstitial micrite cemented by syntaxial 

calcite. Figure 3.10 shows syntaxial calcite cement with partially developed twin 

lamellae, the dominance of blue shows significant porosity and micro porosity within the 
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micritic component of sample. Post-carbon analysis revealed possible dissolution of 

calcite. Also, the presence of spalling due to overburden was recorded. Figure 3.11 shows 

possible dissolution of calcite cement and Figure 3.12 spalling due to pressure from 

overburden. 

 

Figure 3.9 Sc-2- Limestone (Salem Formation) Photomicrograph showing oolitically 
coated bryozoan fragments, coated and uncoated echinoderm fragments, 
and possible foraminifera fragments with interstitial micrite and syntaxial 
calcite cement in the Salem Limestone used as  a control because it is 
predominantly calcite (pre-carbon dioxide). 
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Figure 3.10 Sc-2- Limestone (Salem Formation) Syntaxial calcite cement with partially 
developed twin lamellae.Dominance of blue shows significant porosity and 
micro porosity within the micritic component of sample (pre-carbon 
dioxide). 

 

 

Figure 3.11 Sc-2- Limestone (Salem Formation) Photomicrograph shows possible 
dissolution of calcite cement in the upper right hand corner (post-carbon 
dioxide). 
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Figure 3.12 Sc-2- Limestone (Salem Formation) Spalling due to pressure from 
overburden (post-carbon dioxide). 

 

3.3.3 Sample 3- Ssm-3- Sandstone- Heidelberg field- 15231-15246 ft 

Ssm-3 was classified as sandstone and characterized by the abundance of quartz 

grains and muscovite as an accessory mineral.  Quartz grains are angular to sub angular 

with size varying from coarse to medium sand. The sample is moderately sorted with 

principal cement to be clay. Also, possible presence of dead oil within pores is to be 

noted. Pre-carbon dioxide analysis shows in Figure 3.13 partially altered muscovite 

replaced by quartz and Figure 3.14 shows oil remnants within micro fracture. Post-carbon 

dioxide unveiled possible dissolution in microcline Figure 3.15 and Figure 3.16 shows 

enlarged fracture and uncompacted quartz grains supported within matrix.  
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Figure 3.13 Ssm-3- Sandstone (Heidelberg field)- 15231-15246 ft Muscovite altered 
and partially replaced by quartz in clay matrix (pre-carbon dioxide). 
 

 

Figure 3.14 Ssm-3- Sandstone (Heidelberg field) 15231-15246 ft Elongate brown zone 
in center is possible oil remnant within microfracture and margin of a 
vuggy pore on far right (pre-carbon dioxide). 
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Figure 3.15 Ssm-3- Sandstone (Heidelberg field)- 15231-15246 ft Photomicrograph 
shows voids in grain, possibly dissolution features and also note fracture on 
left corner.  Arrows point to dissolved microcline (post-carbon dioxide). 

 

 

Figure 3.16 Ssm-3- Sandstone (Heidelberg field)- 15231-15246 ft Photomicrograph 
shows enlarged fracture, and uncompacted quartz grains supported within 
matrix (post-carbon  dioxide). 
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3.3.4 Sample 4- Ssm-4- Sandstone- Heidelberg field- 15281-15286 ft 

Ssm-4 is a sandstone from the Heidelberg field and made up of poorly sorted 

quartz grains embedded in a hematite matrix. Quartz grains size vary from fine to coarse 

and are angular to sub-angular shape.  Porosity distribution is irregular and includes 

mostly interparticle porosity. Figure 3.17 shows quartz within hematite matrix and Figure 

3.18 shows irregularly distributed interparticle porosity pre-carbon dioxide. Post-carbon 

dioxide analysis shows little variation. However, possible alteration of quartz can be 

noted in Figure 3.19.  

 

Figure 3.17 Ssm-4 Sandstone (Heidelberg field)- 15281-15286 ft Photomicrograph of 
quartz and possible  hematite matrix. Scale bar is 0.5 mm long (pre-carbon 
dioxide). 



www.manaraa.com

 

36 

 

Figure 3.18 Ssm-4 Sandstone (Heidelberg field)- 15281-15286 ft Irregularly distributed 
interparticle porosity (pre-carbon dioxide). 

 

 

Figure 3.19 Ssm-4 Sandstone (Heidelberg field)- 15281-15286 ft Photomicrograph 
shows possible alteration of quartz (post-carbon dioxide). 
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3.3.5 Sample 5- Se5- Shaly-sandstone-Heidelberg field- 4774.5’ ft 

Sample 5 (Se-5) is characterized by tightly packed sand grains dominated by 

quartz grains with remaining minerals being muscovite, glauconite, pyrite, and possibly 

siderite. Quartz grains are angular to sub-angular and moderately sorted. Grain size varies 

from very coarse to coarse. Also, few grains of partially dissolved muscovite were 

present. Clay seems to be the main cement and porosity present is mostly interparticle. 

Pre-carbon dioxide analysis shows in Figure 3.20 quartz and muscovite. Figure 3.21 

shows glauconite and possibly siderite. Post- carbon analysis of Se-5 provided evidence 

of new elements, which one was unidentifiable in Figure 3.22.  

 

Figure 3.20 Se5- Shaly-sandstone (Heidelberg field)- 4774.5’ ft-  Photomicrograph 
showing quartz and muscovite (pre-carbon dioxide). 
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Figure 3.21 Se5- Shaly-sandstone (Heidelberg field)- 4774.5’ ft-  Glauconite (green) 
and siderite (yellow) (pre-carbon dioxide). 

 

 

Figure 3.22 Se5- Shaly-sandstone (Heidelberg field)- 4774.5’ ft-  Photomicrograph 
shows unidentifiable elements, possibly partially formed “gypsum”(post-
carbon  dioxide). 
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3.3.6 Sample 6- Se-6- Sandstone-Heidelberg field- 4709’ ft 

Se-6 was characterized as poorly, well packed sandstone. Sample is dominated by 

quartz grains with presence of muscovite and glauconite as accessories minerals. Quartz 

grains are sub-angular and show slight trace of alteration. Grain sizes were approximately 

coarse to medium size. Matrix is represented by clay. Porosity type mainly included 

interparticle porosity. Figure 3.23 illustrates poorly sorted, well packed quartz, 

muscovite, clay matrix, and interparticle porosity and Figure 3.24 a close up of glauconite 

pre-carbon dioxide treatment. No apparent change was recorded post-carbon dioxide 

treatment. However, quartz overgrowth, muscovite, and brownish siderite crystalline 

background was observed in Figure 3.25.  

 

Figure 3.23 Se-6- Sandstone (Heidelberg field)- 4709’ ft Poorly sorted, well packed 
quartz,muscovite, clay matrix, and interparticle porosity (pre-carbon 
dioxide).  
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Figure 3.24 Se-6- Sandstone (Heidelberg field)- 4709’ ft Enlarged picture of 
glauconite; scale bar is 0.5 mm (pre-carbon dioxide). 

 

 

Figure 3.25 Se-6- Sandstone (Heidelberg field)- 4709’ ft Quartz overgrowth, 
muscovite, and brownish siderite crystalline background (post-carbon 
dioxide). 
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3.3.7 Sample 7- Sun-7- Sandstone-Heidelberg field- 8410-8787’ ft 

Sample 7 (Sun-7) is made up of well packed, moderately sorted to well sorted, 

angular quartz grains. Muscovite flakes are also present and well packed. Muscovite 

flakes show elongated shape. All grains are embedded in a dark matrix, flocculated clays. 

Porosity is relatively low and sparsely distributed within particles. Figure 3.26 illustrates 

quartz grains, muscovite flakes, and dark-flocculated clay matrix pre-carbon dioxide 

treatment. Figure 3.27 shows a magnified section of figure 3.26. Post-carbon analysis of 

sample 7 (Sun-7) did not show any apparent changes. Figure 3.28 shows poorly sorted 

quartz grain embedded in clay matrix; grain size varies from medium to coarse. Pores are 

filled with possible hydrocarbon remnants. 

 

Figure 3.26 Sun-7- Sandstone (Heidelberg field)- 8410-8787’ ft Picture shows well 
packed angular, moderately well sorted quartz grains, muscovite flakes 
well packed with a dark-flocculated clay matrix (pre-carbon dioxide). 
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Figure 3.27 Sun-7- Sandstone (Heidelberg field)- 8410-8787’ ft Magnified section of 
figure 3.26 showing mica flakes, some partially dissolved (center left) and 
interparticle porosity, blue (pre-carbon dioxide). 

 

 

Figure 3.28 Sun-7- Sandstone (Heidelberg field)- 8410-8787’ ft Picture shows poorly 
sorted quartz grain embedded in clay matrix; grain size varies from 
medium to coarse. Pores are filled with possible hydrocarbon remnants, 
which exhibits a dark brownish color in reflected light (post-carbon 
dioxide). 
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3.3.8 Sample 8- S-8- Dolomitic-Limestone-Smackover core 

Sample 8 represents the Smackover formation. The sample used for this study is 

from an unknown location. The sample is characterized by the presence of calcite 

minerals, dolomite rhombs, and few sparsely distributed pyrites, all embedded in a 

calcitic matrix. Sample 8 from the Smackover formation Sample 8 from is illustrated in 

Figure 3.29, which shows calcite and dolomite minerals, evidence of calcite matrix and 

distinct dolomite rhombs pre-carbon dioxide treatment. Thin section analysis post-carbon 

dioxide of sample 8 did not show any evidence of change; however, presence of pyrite 

was confirmed. Figure 3.30 shows pyrite surrounded by dolomite. 

 

Figure 3.29 S-8- Dolomitic-limestone (Smackover core) Picture shows calcite and 
dolomite minerals, evidence of calcite matrix and distinct dolomite rhombs 
(pre-carbon dioxide treatment). 
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Figure 3.30 S-8- Dolomitic-limestone (Smackover core) Picture shows pyrite 
surrounded by dolomite (post-carbon dioxide treatment). 

 

3.4 X-Ray Diffraction Results 

XRD analyses were conducted to determine and confirm the mineralogy before 

and after exposure to carbon dioxide in all samples. The XRD results for all the samples 

are recorded in table 3.3. Little to no variation was recorded in the most of the samples, 

however, sample (Sun-7) shows presence of muscovite pre-carbon dioxide treatment, 

while no apparent trace of muscovite post treatment. Also, dolomite was present in 

sample 8 (Dolomitic-Limestone) pre-carbon dioxide treatment, while no trace of 

dolomite was recorded post carbon dioxide treatment.  Mineralogy is based in part on the 

JADE ® XRD analytical software. Figure 3.31 shows an example of XRD graph for 

sample 8 (S-8) pre-carbon dioxide treatment.  
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Figure 3.31 XRD shows 29 two-theta (deg) calcite peak in sample 8 (S-8). Also, 31 
two- theta (deg) dolomite peak in sample 8.  
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Table 3.5 Table summarizing XRD results pre- and post-carbon dioxide treatment.   

Samples Lithology 
XRD results pre-

carbon dioxide 

XRD results post-

carbon dioxide 

St-1 Shaly-sandstone N/A Calcite 

Sc-2 
Limestone (Salem 

Formation) 
Calcite Calcite 

Ssm-3 Sandstone Quartz Quartz 

Ssm-4 Sandstone Quartz Quartz 

Se-5 Shaly-Sandstone Quartz Quartz 

Se-6 Sandstone Quartz Quartz 

Sun-7 Sandstone Quartz, Muscovite Quartz 

S-8 

Partially dolomitized 

Limestone 

(Samckover 

Formation) 

Calcite, Dolomite Calcite 
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3.5 Scanning Electron Microscopy (SEM) Results 

SEM analysis was conducted for each of the sample with the intent to determine 

any changes before and after carbon dioxide treatment. SEM enables the study of the 

microstructure, the micropores, fractures, and the nature of the different minerals present 

pre- and post-carbon dioxide treatment of the samples.   

3.5.1 Sample 1- St-1- Heidelberg field/4,916-5,581 ft 

SEM analysis of sample 1 (St-1) pre-carbon dioxide exposure is illustrated in 

Figure 3.32 showing enlarged fracture in a clay matrix and evidence of clay minerals 

presence, possibly smectite in Figure 3.33. Post-carbon dioxide analysis of sample 1 

revealed possible trace of dissolution and corrosion. Dissolution exhibits karst like 

structure that could easily be interpreted as pock marks. Corrosion was observed on 

surface of smectite and surrounding area. Smectite grain shows strong discolorations 

pattern. Area affected exhibits a strong dark grey coloration compare to unaffected area 

showing a light grey coloration. Figure 3.34 shows possible dissolution in calcite and 

what was label as corrosion in smectite in Figure 3.35 post-carbon dioxide treatment. 
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Figure 3.32 St-1- Heidelberg field/4,916-5,581 ft SEM picture shows enlarged fracture 
in very fine clay matrix. Note flaky aspect of matrix (pre-carbon dioxide). 

 

Figure 3.33 St-1- Heidelberg field/4,916-5,581 ft Evidence of clay minerals presence, 
possibly Smectite (pre-carbon dioxide).  
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Figure 3.34 St-1- Heidelberg field/4,916-5,581 ft SEM image shows cavity in calcite 
embedded in clay matrix. Cavity exhibits karst-like structure more like 
pock marks (post-carbon dioxide).   
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Figure 3.35 St-1- Heidelberg field/4,916-5,581 ft SEM image shows what is believed to 
be corrosion in smectite grain. Strong discoloration of grain can be noted. 
The area affected presents a dark grey coloration comparing to the light 
grey of unaffected area (post-carbon dioxide). 

3.5.2 Sample 2- Sc-2- Limestone- Salem Formation (control) 

Pre-carbon analysis of sample 2 (Sc-2) is illustrated in Figure 3.36 showing 

calcite grain exhibiting truncated like shape. The calcite grains are embedded in a micrite 

matrix and did not show any evidence of dissolution. Figure 3.37 shows interlocking 

calcite crystals with microporosity and either incomplete crystal growth or dissolution pre 

carbon dioxide treatment.   

Post-carbon dioxide analysis of sample Sc-2 unveiled evidence of dissolution that 

resembles karst-like features. The dissolution features were only observable at high 

magnification on calcite crystal surfaces. Figure 3.38 shows possible evidence of 

dissolution and Figure 3.39 shows dissolution features exhibiting karst-like structures in 

Sc-2 post carbon dioxide.  
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Figure 3.36 Sc-2- Salem Formation (control) SEM image shows calcite grain showing 
truncated-tetrahedron like shape embedded in a micrite matrix, no evidence 
of dissolution was observed.  Also, calcite crystals have relatively smooth 
surfaces (pre-carbon dioxide).  
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Figure 3.37 Sc-2- Salem formation (control) SEM  image shows interlocking calcite 
crystals with microporosity and either incomplete crystal growth or 
dissolution (pre-carbon dioxide). 
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Figure 3.38 Sc-2- Salem Formation (control) High magnification of calcite crystal face 
showing some possible evidence of dissolution (post-carbon dioxide).   

 

 

Figure 3.39 Sc-2- Salem formation (control) SEM  image shows evidence of 
dissolution that resembles karst-like features, but at a very small scale 
(post-carbon dioxide). 
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3.5.3 Sample 3- Ssm-3- Sandstone-Heidelberg field- 15,231-15,246 ft 

Sample 3 (Ssm-3) analysis in SEM shows the presence of clay matrix and quartz 

grain. Quartz crystals, even though altered, show hexagonal shape. Clay matrix was 

identified by the flaky-like structure exhibited by most clay minerals. Presence of pores 

was not recorded but microfracture was observed. Variations in Ssm-3 post-carbon 

dioxide include abundance of micropores in clay. The micropores present seem to 

represent dissolution induced by carbon dioxide.  Figure 3.40 illustrates quartz grain 

embedded in clay matrix and partially recovered by clay minerals pre-carbon dioxide. 

Figure 3.41 shows sparsely distributed micropores in clay. Figure 3.42 shows also 

micropores in clay.  

 

Figure 3.40 Ssm-3- Heidelberg field- 15,231-15,246 ft SEM image shows quartz 
embedded and partially covered by clay (pre-carbon dioxide). 
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Figure 3.41 Ssm-3- Heidelberg field- 15,231-15,246 ft SEM image shows micropores 
(post-carbon dioxide). 

 

 

Figure 3.42 Ssm-3- Heidelberg field- 15,231-15,246 ft Higher magnification image of 
micropores (post-carbon dioxide). 
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3.5.4 Sample 4- Ssm-4- Sandstone- Heidelberg field- 15,281-15,286 ft 

Figure 3.43 shows the presence of altered hexagonal quartz grain embedded in 

clay matrix, also, microfracture can be observed pre-carbon dioxide treatment. Variation 

within sample 3 (Ssm-4) post carbon dioxide treatments was not recorded. Post-carbon 

dioxide analysis revealed the presence of quartz grain embedded in clay matrix. Clay 

presents flaky structure. Figure 3.44 shows edge of quartz grain embedded in clay matrix 

and clay mineral exhibiting flaky structure post carbon dioxide.  

 

Figure 3.43 Ssm-4- Heidelberg field- 15,281-15,286 ft SEM image shows altered 
hexagonal quartz grain  (top left corner) embedded in clay matrix and 
microfracture (pre-carbon dioxide). 
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Figure 3.44 Ssm-4- Heidelberg field- 15,281-15,286 ft Picture shows edge of quartz 
grain embedded in clay matrix and clay mineral exhibiting flaky structure 
(post carbon dioxide). 

3.5.5 Sample 5- Se5- Shaly-sandstone- Heidelberg field- 4,774.5’ ft 

Sample 5 (Se-5) analyses, pre carbon dioxide, provided evidence of quartz 

crystals embedded in clay matrix, and possible pyrite in Figure 3.45. Quartz crystals were 

well developed and showed no evidence of alteration. The crystal size varies from 2 to 1 

mm. clay minerals present are mostly kaolinite and seem to fill some of the pores present, 

however, some voids could be seen in Figure 3.46.  Post-carbon dioxide treatment of 

sample 5 (Se-5) lead to unveiled precipitation of new mineral. The mineral seemed to 

have precipitated on top of quartz crystals and clay minerals. The mineral exhibits lath 

shape like structure or band like structure. The new minerals have a size ranging from 1 

to 2 mm in length and 0.5 mm in width. Crystals show S, O, and Ca in EDS.  Figure 3.47, 

3.48, 3.49, and Figure 3.50 illustrated new precipitated mineral in sample 5 (Se-5) and 

was identified as possible “gypsum”. 
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Figure 3.45 Se5- Heidelberg field- 4,774.5’ ft SEM image shows quartz crystals in clay 
matrix and microporosity (pre-carbon dioxide).  
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Figure 3.46 Se5- Heidelberg field- 4,774.5’ ft SEM image shows quartz crystal over 

lain by clays minerals, but multiple voids exist (pre-carbon dioxide). 

 

 

Figure 3.47 Se5- Heidelberg field- 4,774.5’ ft SEM image shows precipitation of 
gypsum in lath shaped crystals. Crystals show S, O, and Ca in EDS (post-
carbon dioxide treatment). 
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Figure 3.48 Se5- Heidelberg field- 4,774.5’ ft High magnification of “gypsum” 
covering quartz crystals (post-carbon dioxide). 

 

 

Figure 3.49 Se5- Heidelberg field- 4,774.5’ ft SEM image shows flower-like structure 
growth pattern exhibited by “gypsum” (post-carbon dioxide). 
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Figure 3.50 Se5- Heidelberg field- 4774.5’ ft SEM image shows fiber-like structure of 
“gypsum” partially occluding pores (post-carbon dioxide). 

3.5.6 Sample 6- Se-6- Sandstone- Heidelberg field- 4,709’ ft 

SEM analysis pre- and post-carbon analysis did not show any variations or 

changes in sample 6 (Se-6). Figure 3.51 shows larger crystal faces over lain by clays 

minerals, but multiple voids exist before carbon dioxide exposure. Figure 3.52 shows 

enlarged fracture in clay matrix post-carbon dioxide.  
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Figure 3.51 Se-6- Heidelberg field- 4,709’ ft SEM image shows larger crystal faces 
over lain by clay minerals, but multiple voids exist (pre-carbon dioxide). 

 

 

Figure 3.52 Se-6- Heidelberg field- 4,709’ ft SEM image shows enlarged fracture (post-
carbon dioxide). 
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3.5.7 Sample 7- Sun-7- Sandstone- Heidelberg field- 8,410-8,787’ ft 

SEM Pre-carbon analysis of sample 7 (Sun-7) is illustrated in Figure 3.53 

showing well developed quartz crystal embedded in clay matrix. Figure 3.54 shows 

conglomeration of possible clay minerals in cluster post-carbon dioxide. 

 

Figure 3.53 Sun-7- Heidelberg field- 8,410-8,787’ ft SEM image shows well developed 
quartz crystal embedded in clay matrix (pre-carbon dioxide). 
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Figure 3.54 Sun-7- Heidelberg field- 8,410-8,787’ ft SEM image shows 
conglomeration of possible clay minerals in a cluster. Also, Note 
significant inter particle porosity between grains and flakes of clay (post-
carbon dioxide). 

3.5.8 Sample 8- S-8- Dolomitic-Limestone- Smackover core 

Sample 8 (S-8) represents the Smackover formation. SEM analysis illustrated the 

presence of well developed dolomite crystal embedded in micron size calcite. Crystal 

faces are very smooth and present no apparent alteration. Calcite minerals were also 

observed and presented evidence of alteration. Abundance of microporosity and 

microfracture were recorded.  Exposure of sample to carbon dioxide engendered 

precipitation of a new mineral on the surface. The new mineral exhibits a flower like 

structure. The mineral seemed to have grown from a central point and branched out. 

Flowers sizes are roughly 0.50 to 0.25 mm. Crystals show O, Ca, S, and Mg in EDS. 

Figure 3.55 shows partially altered calcite embedded in micro size calcite and Figure 3.56 

shows image of rhombohedral dolomite within micron size calcite crystals prior to 
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treatment with carbon dioxide. Figure 3.57, 3.58, 3.59 shows gypsum mineral exhibiting 

flower like structure. 

 

Figure 3.55 S-8-Smackover core SEM images of partially altered calcite crystals and 
microfractures (pre-carbon dioxide). 

 

 

Figure 3.56 S-8-Smackover core SEM image of rhombohedral dolomite within micron 
size calcite crystals and open  microporosity (pre-carbon dioxide). 
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Figure 3.57 S-8-Smackover core SEM image shows flower like structure of newly 
precipitated “gypsum” (post-carbon dioxide). 

 

 

Figure 3.58 S-8-Smackover core High magnification images of gypsum “flowers” 
(post-carbon dioxide). 
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Figure 3.59 S-8-Smackover core SEM image shows possible point of growth start of 
“gypsum” (post-carbon dioxide).   

3.6 EDS Results 

EDS analysis was performed on sample Se5 (Shaly-sandstone) and S-8 

(Dolomitic-Limestone) post carbon dioxide to determine the nature of the elements from 

the possible precipitation of new minerals, which one was interpreted as gypsum. In 

sample Se-5, the gypsum presents a lath or fibrous like structure while in sample S-8 it 

exhibits a flower like structure. Also, strong evidence of Oxygen (O), Sulfur (S), 

Magnesium (O), and Calcium (Ca) can be recorded in the area covered by the gypsum. 

Figure 3.60 represents EDS analysis for Se-5 and Figure 3.61 shows elemental mapping 

for SE-5. Figure 3.62 shows EDS analysis for S-8 and Figure 3.63 shows elemental 

mapping for S-8. All EDS analyses and elemental mapping were conducted post-carbon 

dioxide treatment. 
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3.6.1 Sample 5 – Se-5 – Shaly-sandstone- 4,774.5 ft (Heidelberg Field) 

 

Figure 3.60 FESEM Se-5. 4,774.5 ft EDS analysis shows elements of mineral occurring 
post carbon dioxide treatment. New mineral seems to have precipitated on 
top of clays. Elements found include oxygen (O), calcium (Ca), sulfur (S), 
and platinum (Pt). All samples were coated with platinum, explaining the 
platinum peaks. 
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Figure 3.61 FESEM Se-5 (Heidelberg Field)/4,774.5 ft Gypsum lath seems to have 
precipitated on top of clays after carbon dioxide treatment. 

 

 

Figure 3.62 Se-5 (Heidelberg field)/4,774.5 ft Elemental mapping of gypsum lath 
occurring on top of clays post-carbon dioxide treatment. Note strong 
evidence of sulfur (S), oxygen (O), magnesium (Mg), calcium (Ca) in the 
area covered by the gypsum lath. 
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3.6.2 Sample S-8 – Dolomitic-Limestone (Smackover core) 

 

Figure 3.63 FESEM S-8 Smackover core EDS analysis shows elements in the newly 
precipitated mineral. Elements present are calcium (Ca), magnesium (Mg), 
oxygen (O), and sulfur (S). 
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Figure 3.64 S-8 Smackover core Elemental mapping of gypsum flower provided 
evidence of sulfur (S), magnesium (Mg), and calcium (Ca). 
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3.7 Focused Ion Beam Tomography-SEM Results 

FIB-SEM analysis was conducted to understand the microstructure of sample 

eight (dolomitic-limestone) pre and post carbon dioxide. Pre carbon dioxide FIB results 

show the distribution and arrangement of the pore system, the type of pores, and their 

connectivity relative to each other.  Figure 3.65 represents a single image generated using 

FIB. A series of image were generated and a 3D reconstruction of the microstructure of 

the area studied was developed and showed in Figure 3.66. Post-carbon dioxide analysis 

provided the distribution of the gypsum minerals. Gypsum seemed to have precipitated in 

some of the pores and occluded porosity, thus reducing permeability of the sample. 

Figure 3.67 illustrates a single image generated post carbon dioxide using FIB.  

 

Figure 3.65 FIB-S-8 (dolomitic-limestone)/Smackover Fm Image showing a cross 
section generated by FIB. Note pores on image surface (pre-carbon 
dioxide). 
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Figure 3.66 FIB-S-8 (Dolomitic-limestone)/Smackover Fm Image shows 3D 
reconstruction of sample 8 pore system and connectivity (yellow), using the 
different pictures generated by FIB pre-carbon dioxide. 

 

 

Figure 3.67 FIB- S-8 (dolomitic-limestone)/Smackover Fm Image of 1 cross section of 
sample  8  post-carbon dioxide.  

Pores seem to be filled with new elements (post-carbon dioxide).
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CHAPTER IV 

DISCUSSION 

Carbon dioxide is one of the most significant emitted anthropogenic gases in the 

atmosphere in this century ([IPCC], 2005). Reducing the emission of carbon dioxide has 

been one of the biggest challenges not only for the energy industry but also for 

environmentalists. Many studies have proven that CO2 storage and sequestration in 

geologic formations or use in EOR are potential options to considerably reduce the 

impact of carbon dioxide without impacting our daily production and use of energy. 

However, geologic formations, due to different lithologies, will chemically react with the 

carbon dioxide upon storage and sequestration. This study has attempted to determine the 

different and possible impacts generated by carbon dioxide on different lithologies, 

specifically those found in the Heidelberg field, south central Mississippi.  

Thin section analyses of pre- and post- carbon dioxide impact on siliciclastic and 

carbonate rocks has revealed strong evidence of alteration in three samples: 1) sample 1-

St-1 (Heidelberg field/ 4,916-5,581 ft) obtained from the Heidelberg field and 

characterized by quartz grains and calcitic shells of gastropod embedded in a calcite 

matrix, 2) sample 2 (carbonate/limestone) associated with the Salem Formation and 

described as a carbonate, 3) Sample 5 (shaly-sandstone/ 4,774.5’ ft) is from the 

Heidelberg field and made up of tightly packed sand grains dominated by quartz grains 

with remaining minerals being muscovite, glauconite, and possibly siderite. The different 
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alterations recorded in thin sections were mostly dissolution in calcite minerals and 

precipitation of unidentifiable elements. In sample St-1 dissolution mainly occurred in 

calcitic gastropod shell (Figure 3.7 and 3.8), in sample Sc-2 (carbonate/limestone) 

dissolution occurred mainly in calcite cement (Figure 3.11). Dissolution in St-1 and Sc-2 

seems to be related to the presence of calcite in abundance in both of the samples. These 

observations are in agreement with the observations of Pearce et al. (1996), Rochelle et 

al. (1996), and Gunter et al. (1997). During an experiment run for 1 to 8 months 

involving carbon dioxide, at temperatures of 105º and 80º C, a sandstone rich in calcite 

and dolomite, subsequent dissolution of calcite and dolomite was observed (Pearce et al., 

1996; and Rochelle et al., 1996). Furthermore, in a similar experiment but this time on 

glauconitic sandstones (Alberta sedimentary basin), at a temperature of 105º C, 

dissolution of carbonate minerals occurred (Gunter et al., 1997). Calcite and dolomite are 

two minerals prone to dissolution under specific conditions. The relative high pressure 

and temperature (80º to 100º C) suggested that carbon dioxide presence led to a decrease 

in the pH of the system (Emberley et al., 2004, 2005), making the system more acidic, 

facilitation the dissolution of calcite and dolomite. Although dissolution in St-1 and Sc-2 

was favored by the presence of calcite, no apparent dissolution was observed for S-8 

(dolomitic-limestone), which is characterized by the abundance of calcite and dolomite. 

The possible explanation is that even if precipitation occurred, precipitation of “gypsum” 

may have overprinted traces of dissolution. Precipitation of gypsum could not be fully 

acknowledged in thin section.  
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Porosity analyses of the samples before and after carbon dioxide treatment did not 

unveil any considerable difference. The porosity after carbon dioxide exposure shows 

similar trends with slight variation in samples St-1 and S-7 (Figure 3.68).  

 

Figure 4.1 Pre vs Post carbon dioxide porosity trend for each of the eight samples. 

Blue line repesents samples pre-carbon dioxide and red line represents post-carbon 
dioxide.  

The two graphs were generated to compare porosity for each sample before and 

after exposure to carbon dioxide. The blue line represents the porosity trend for each 

sample pre- carbon dioxide treatment, while the red line represents post-carbon dioxide 

treatment porosity trend. The slight or no apparent change recorded in the porosity data 

after exposure to carbon dioxide was attributed to the possible low rate of dissolution that 

may have occurred in the samples. Although dissolution occurred, it was probably not 
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enough to quantitavely record an apparent change between the porosity before and after 

exposure to carbon dioxide.  

SEM analyses revealed not only dissolution, but also precipitation of new mineral 

respectively in sample St-1 (Heidelberg field/4,916-5,581 ft) in Figure 3.34, sample Sc-2 

(carbonate/limestone) in Figure 3.38 and 3.39, and sample Ssm-3 (sandstone/ 15,231-

15,246 ft) in figure 3.41 and 3.42, sample Se-5 (shaly-sandstone/ 4,774.5’ ft) in Figure 

3.47, 3.48, 3.49, and 3.50, and sample S-8 (dolomitic-limestone) in figure 3.56, 3.57, and 

3.58. The newly precipitated mineral exhibits lath like structure in sample Se-5 and 

flower-like structure in sample S-8 (dolomitic-limestone). In sample Se-5 (shaly-

sandstone), the new mineral seems to have grown on top of the pre-existing minerals 

(Figure 3.47, 3.48, 3.49, and 3.50), when in sample S-8 (dolomitic-limestone), it seems 

that the mineral grew on the surface from a focal point out (Figure 3.57, 3.58, and 3.59). 

EDS analysis and elemental mapping provided strong evidence that the new mineral 

contained the following elements: sulfur, oxygen, calcium, and some magnesium; thus, 

leading to conclude that the mineral is probably gypsum. Gypsum is characterized by 

tabular, diamond, or fibrous shaped (Pellet, 2002). The chemical formula of gypsum is 

CaSO4.2H2O, and consists of strongly bonded layers of SO4
2- and Ca2+ with layers of H2O 

molecules (Nesse, 2000).  The formation of the gypsum in sample Se-5 and S-8 is 

somewhat unclear, but could be related to the minerals in presence. Sample Se-5 is, a 

shaly-sandstone from the Heidelberg field, characterized by tightly packed sand grains 

dominated by quartz grains with remaining minerals being muscovite, glauconite, pyrite, 

cacite, and possibly siderite. Sample S-8 is, a dolomitize-limestone from the Smackover 

Formation, characterized by calcite, dolomite, and pyrite. The suggestion for the 



www.manaraa.com

 

78 

formation of gypsum within those samples was tied to the presence of Sulfide mineral 

(pyrite, FeS2) and carbonate minerals (calcite, CaCO3; and dolomite, CaMg(CO3)2).  The 

carbon dioxide, at relative high temperature and pressure, was able not to only oxidized 

our system but also lower the pH of the system, thus making it more acidic. The decrease 

of the pH may have induced dissolution of carbonate minerals present (calcite), saturating 

the system in Ca2+. Also, pyrite oxidation will lead to the productivity of SO4
2- in the 

system. Once the system was saturated with respect to two elements, reaction occurred 

between Ca2+ and SO4
2- in presence of water, leading to the precipitation of gypsum. A 

similar mechanism was suggested for the formation of diagenetic gypsum and dolomite 

in a cold water coral mound in the Porcupine Seabight, off Ireland (Deutsch, 1997; Pirlet 

et al., 2010). Pyrite oxidation, in a system rich in carbonate minerals, will lead to release 

of SO4
2- in the system, subsequently increasing the acidity, thus promoting the dissolution 

of calcite and introduction of Ca2+ in the system; thus, upon saturation of SO4
2- and Ca2+,  

precipitation of gypsum will be recorded (Deutsch, 1997; Pirlet et al., 2010). The 

following equations show the possible reaction leading to the precipitation of gypsum: 

equation 4.1 represents only the reaction between calcium and sulphate in presence of 

water leading to gypsum precipitation, when equation 4.2 represents the total reaction 

from oxidation of pyrite to gypsum precipitation and by products.  

 2SO4
2 + 2Ca2+ + 4H2O → 2 CaSO4.2H2O (Eq. 4.1) 

(Pirlet et al., 2010)  
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 FeS2 + 15/4 O2 + 9/2 H2O + 4CaCO3 → 4 Ca2+ + 4 HCO3 + 2 SO4
2- +   

 (Eq. 4.2) 
 FeOOH + 2 H2O → 2 CaSO4.2H2O(s) + 2 Ca2+ + 4HCO3 + FeOOH  

(Pirlet et al., 2010) 

This study presented some limitations. The first limitation encountered was the 

slow kinetics of the reactions. Reactions involving carbon dioxide with rocks and 

minerals tend to occur at a slow rate and require a long time to come to completion 

(Marini, 2007). Also, the temperature and pressure in the laboratory do not fully represent 

all field conditions. The experiment was designed to approximate as closely as possible 

the effects of overburden pressure and geothermal gradient, but was limited by the 

functional temperature of the oven we had access to in the lab. Further, heterogeneity of 

some of the samples made it difficult to adequately compare the change in some of the 

samples. Finally, some of the reactions occurring between carbon dioxide and some of 

the minerals are very complex. This study is a first look at this complex problem and 

forms a basis for future, more details studies. 
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CHAPTER V 

CONCLUSIONS 

The research performed for this study has resulted in four major conclusions 

regarding the possible impact of carbon dioxide on different lithologies in the subsurface 

of south-central Mississippi, specifically from the Heidelberg field: 

1. Carbon dioxide has induced alteration in sample St-1 and Sc-2. The 

alterations recorded were dissolution and corrosion. Dissolution of calcite 

a replacing gastropod shell was observed in St-1 (Heidelberg field/ 4,916-

5,581 ft) and in calcite cement in sample Sc-2 (carbonate/limestone). 

Dissolution was mostly observed in thin sections. Corrosion in St-1 

occurred on possible smectite grain and was observed at SEM.  

2. Precipitation of gypsum in sample Se-5 (shaly-sandstone) and S-8 

(dolomitic-limestone) was recorded and observed at the SEM. The 

formation of gypsum is associated with oxidation of pyrite and dissolution 

of calcite, leading to the release of Ca2+ and SO4
2- . Upon saturation of the 

system, reaction between Ca2+ and SO4
2- occurred and led to the 

precipitation of gypsum (CaSO4·2H2O). Carbon dioxide and high 

temperature promote reaction in the system. 

3. Qualitatively, porosity in sample St-1 (Heidelberg field/4,916-5,581 ft) 

and Sc-2 (carbonate/limestone) has changed and could be correlated to 
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dissolution of calcite in those samples. Quantitavely, no apparent change 

could be seen by comparing before and after carbon dioxide treatment. 

This was explained by the very low amount of dissolution that occurred. It 

is possible that if the epoxy had been dyed correctly in the second set that 

the digital method would have caught a slight difference.  

4. The examined lithologic units in the Heidelberg field are probably all 

suitable for enhanced oil recovery. However, formation of gypsum, and 

resulting porosity loss, in the Eutaw and Smackover Formations could 

affect long-term production. Each of the lithologies studied would 

probably be lithologically suitable for long term storage and captured 

carbon dioxide. However, this study did not consider features such as 

fractures and regional faults and would make an oil field unsuitable for 

carbon storage.
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